Step of Proof: equiv_rel_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
equiv
rel
functionality
wrt
iff
:
1.
T
: Type
2.
T'
: Type
3.
E
:
T
T
4.
E'
:
T'
T'
5.
T
=
T'
6.
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
)
EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
EquivRel(
T'
;
x
,
y
.
E'
(
x
,
y
))
latex
by (Repeat (Unfolds ``equiv_rel refl sym trans`` 0))
latex
1
:
1:
((
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
)))
1:
((
a
:
T'
.
E'
(
a
,
a
))
1:
& (
a
,
b
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
a
))
1:
& (
a
,
b
,
c
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
.
Definitions
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
origin